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A Nonlinear Dynamic Latent Class Structural
Equation Model

Augustin Kelava1 and Holger Brandt2
1University of Tübingen
2University of Kansas

In this article, we propose a nonlinear dynamic latent class structural equation modeling
(NDLC-SEM). It can be used to examine intra-individual processes of observed or latent
variables. These processes are decomposed into parts which include individual- and time-
specific components. Unobserved heterogeneity of the intra-individual processes are mod-
eled via a latent Markov process that can be predicted by individual- and time-specific
variables as random effects. We discuss examples of sub-models which are special cases of
the more general NDLC-SEM framework. Furthermore, we provide empirical examples and
illustrate how to estimate this model in a Bayesian framework. Finally, we discuss essential
properties of the proposed framework, give recommendations for applications, and highlight
some general problems in the estimation of parameters in comprehensive frameworks for
intensive longitudinal data.

Keywords: time-series analysis, dynamic structural equation model, intensive longitudinal
data, Bayesian methods

In the past years, so-called ambulatory assessment of
intensive longitudinal data has become technically very
easy. Electronic devices such as wearable devices and
smartphones allow for a high number of repeated mea-
sures. These cover self-report data, peripheral physiolo-
gical measures, and objective data, such as movements
(Trull & Ebner-Priemer, 2014). Parts of these data are
relatively stable or collected only once at the beginning
of a study (e.g., dispositions, traits, covariates). They
describe inter-individual differences and may be used to
predict future developments. Other parts of the data are
frequent measures within individuals (which describe
intra-individual changes). Time-specific variables such
as interventions or other events can be of importance.
Their relevance can be investigated with regard to how
they affect the inter- and intra-individual differences in
the development process. However, comprehensive sta-
tistical frameworks are needed which are capable of

describing intra-individual changes that depend on inter-
individual differences and time-specific effects.

For a small number of repeated measures, latent
growth curve models (e.g., Bollen & Curran, 2006) or
—equivalently—multilevel models (e.g., Asparouhov &
Muthèn, 2016; Rabe-Hesketh, Skrondal, & Pickles, 2004)
can be used, which describe intercepts and changes as
random latent variables. For a larger number of repeated
measures, autoregressive effects can be included. In the
past, many approaches were proposed for the analysis of
these data, such as dynamic factor models (Molenaar,
1985, 2017; Zhang, Hamaker, & Nesselroade, 2008;
Zhang & Nesselroade, 2007), (multivariate) time-series
models (e.g., Box, Jenkins, Reinsel, & Ljung, 2015;
Durbin & Koopman, 2001), latent Markov models (e.g.,
Altman, 2007), and many more.

Recently, Asparouhov, Hamaker, andMuthén (2017a) pro-
posed a dynamic latent class analysis (DLCA) approach.
There are two important properties of the DLCA approach:
(1) Each individual is a member of a latent class at each time
point with a specific probability. The latent class membership
follows a Hidden Markov Model process, that is, future class-
membership depends on previous class-membership. TheCorrespondence should be addressed to Augustin Kelava. E-mail:
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individual-specific transition probabilities are estimated as
(between-level) random effects which are parameterized by
a structural equation model or factor model. For example,
inter-individual differences (such as differences in personality
traits, e.g., vulnerabilities) predict the probabilities of changes
between the latent classes (e.g., states of intentions to quit
college). (2) The within-level model is a dynamic (time-
series) model with autoregressive effects of the latent vari-
ables. For example, intra-individual changes of affective
states could be part of the model (e.g., trajectories of
moods). The DLCA approach is an important combination
of mixture modeling and latent time-series modeling.

Another comprehensive framework, the dynamic struc-
tural equation model (DSEM), was proposed by the same
authors (Asparouhov, Hamaker, & Muthén, 2017b). (1) The
DSEM framework separates (1.a) subject-specific and (1.b)
time-specific random effects (on the between-level). (2)
There is a dynamic latent variable model, which describes,
for example, the intra-individual (within-level) changes
using an autoregressive process of latent variables. (3)
Each random within-level parameter is explained by the
subject-specific and time-specific random effects (see
above). Therefore, the DSEM approach describes hetero-
geneity of the intra-individual trajectories by inter-
individual differences and time-specific effects. Especially,
the separation of time-specific and person-specific random
effects can be seen as an important extension of single-level
dynamic latent variable models.

However, there are also specific aspects of these large
frameworks which need consideration: First, the DLCA frame-
work does not separate time- and person-specific random
effects. Second, the DSEM framework does not include
a Hidden Markov Model for unobserved heterogeneity.
Transitions between states can be of importance. For example,
they could reflect unobserved heterogeneity in decision pro-
cesses (e.g., to quit college). Third, neither the DLCA frame-
work nor the DSEM framework include nonlinear effects at the
between or within level. Nonlinear effects (such as simple
interactions) are part of substantive theories, e.g., expectancy-
value theories of motivation propose that high expectancies and
high values (as a combination) lead to high motivation.

As a result, it is plausible to combine and to extend both
frameworks in order to obtain a comprehensive approach
which is capable of (a) intra-individual changes (as
a DSEM), (b) inter-individual differences, which have an
effect on the individual trajectories, (c) time-specific effects
(as random effects), and (d) dynamic latent class member-
ships, which capture heterogeneity of the trajectories or
which can reflect nominal latent variables (such as knowl-
edge mastery). Furthermore, it has been advocated to
include (e) flexible nonlinear effects (e.g., splines or inter-
actions) in models (e.g., Marcoulides & Khojasteh, 2018),
in order to account for (multiple) complex relationships
between the latent variables (e.g., Brandt, Cambria, &

Kelava, 2018). To the best of our knowledge, the proposed
model is the first multilevel dynamic latent variable frame-
work that unifies these five elements and allows for the
specification of nonlinear effects on both the within- and
between levels and that unifies these five aspects.

Besides this technical motivation, the NDLC-SEM
approach is a natural extension of existing SEM approaches
to develop possibilities to test existing theories on dynamic
changes in motivation, personality, attitudes, interests,
attachment, etc. in more detail (e.g., Fraley, 2002; Krapp,
2002; Pintrich, Marx, & Boyle, 1993; Wigfield, Eccles,
Mac Iver, Reuman, & Midgley, 1991).

Aims of the article

In this article, we first present the nonlinear dynamic latent
class structural equation modeling (NDLC-SEM)
approach. Second, we give examples of sub-models which
are special cases of the more general NDLC-SEM frame-
work. Third, we provide a detailed simulated and an
empirical example and explain the estimation of the
model using a Bayesian approach. Finally, we discuss the
properties of the proposed framework, give recommenda-
tions for its application, and highlight general problems of
estimating parameters in such comprehensive frameworks.

THE NONLINEAR DYNAMIC LATENT CLASS
STRUCTURAL EQUATION MODEL

The proposed NDLC-SEM contains several submodels. In
its comprehensive version, the NDLC-SEM incorporates
both inter-individual and time-specific random effects.
The individual specific random effects can be used to
specify a DLCA (e.g., Asparouhov et al., 2017a), which
models latent transitions processes using Markov chain
models. A variety of models can be specified as special
cases, such as two-level dynamic SEM, dynamic LCA
models, single-level dynamic CFA and SEM, state-space
models, and time-series models.

We start by decomposing the observed scores. Let Yit be
a (J � 1) dimensional vector of measurements for indivi-
dual i at time t. Note that each individual i is observed at
times t ¼ 1; 2; :::; Ti and that Ti might be individual specific
(individuals might differ in the number of measurement
occasions.). The decomposition in the general NDLC-
SEM is as follows:

Yit ¼ Y1it þ Y2i þ Y3t (1)

where Y2i and Y3t are (J � 1) dimensional individual-
specific and time-specific parts, respectively. Y1it is the
deviation of an individual i at time t from Y2i and Y3t.
Note that Y1it might depend on a latent state s of an
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individual i at time t, which leads to ½Y1itjSit ¼ s� instead of
Y1it. For example, affective states could be measured
repeatedly with different items. Y2i then refers to the indi-
vidual item score level across time, Y3t refers to the average
item score across subjects at each time point t, and Y1it is
the person- and time-specific deviation of a subject’s score
relative to the person’s and time-related item levels.

In the next subsection, we describe both the individual-
specific and time-specific (between-level) models. After
this, we describe the within-level model for Y1it and the
Markov switching model for the latent states.

The between-level models

Individual-specific component Y2i

The individual-specific component Y2i is explained by
a measurement equation and a structural equation
(“between-level’’ in multilevel models). It models the inter-
individual differences in the developmental trajectories that
are independent of time:

Y2i ¼ ν2 þ Λ2η2i þ K2X2i þ �2i (2)

η2i ¼ α2 þ B2η2i þ Ω2h2ðη2iÞ þ Γ2X2i þ ζ2i: (3)

X2i is a (G2 � 1) dimensional vector of individual-specific,
time-invariant (baseline) covariates (e.g., gender). η2i is
a (M2 � 1) dimensional vector of individual-specific, time-
invariant latent variables (e.g., representing latent con-
structs at baseline measure such as baseline depression).

h2ðη2iÞ is R2 dimensional vector of functions of η2i. For
example, if interaction and quadratic effects are specified,
hðη2iÞ ¼ vech ðη2iη2i0Þ is a (R2 ¼ M2ðM2 þ 1Þ=2� 1)
dimensional vector of products of latent variables. �2i
(J � 1) and ζ2i (M2 � 1) are multivariate residuals with
zero expectations. At this point, we do not assume
a specific distribution of the residuals, which should rely
on theoretical considerations. In the context of Bayesian
estimation, even complicated multivariate distributions can
be easily specified. In the frequentist context, practical
consideration of available implementations might lead to
the assumption of multivariate normal distributions. The
same holds for the following equations with residuals. ν2
(J � 1), Λ2 (J �M2), K2 (J � G2), α2 (M2 � 1), B2

(M2 �M2), Ω2 M2 � R2, and Γ2 (M2 � G2) are matrices
of fixed effects (including intercepts and coefficients).

h2ðÞ can be used very flexibly such as for the specifica-
tion of splines that approximate unknown relationships
between the latent variables. Then, h2 consists of unidimen-
sional functions h2m (m ¼ 1; . . .M2) for each latent predic-
tor η2mi that are defined as (see, e.g., Guo, Zhu, Chow, &
Ibrahim, 2012):

h2mðη2miÞ ¼
XNm

νm¼1

h�2mνmðη2miÞ; (4)

where h�2mνm are basis functions with dimension Nm, for
example, cubic splines with Nm nodes (see details in
Hastie, Tibshirani, & Friedman, 2009; Wood, 2017). Note
that standard identification rules for splines apply (i.e., with
regard to the intercept and linear effects in Equation (3) that
need to be considered when including basis expansions,
see, Guo et al., 2012).

Further, it is possible to add semiparametric interactions
between two predictors using two-dimensional functions
h2mm0 ;m0 > m ¼ 1 . . .M2 � 1 which are operationalized as
tensor product bases of the form

h2mm0 ðη2mi; η2mi0 Þ ¼
XNm

νm¼1

XNm0

νm0¼1

h�2mνmðη2miÞh�2m0νm0
ðη2m0ikÞ:

(5)

Splines are a non-parametric regression technique that can
be seen as extensions of linear regression models. They
have the advantage that they can flexibly adapt to nonlinea-
rities and interactions of variables, even if the functional
form of the relationship between the variables is unknown.
Compared with the strict parametric functional representa-
tion of nonlinear effects (i.e., Ω2η2iη2i

0Þ, splines come with
less assumptions and can approximate even higher order
nonlinear effects by piecewise polynomials. Recently, the
extension of SEM to incorporate splines has received
increasing attention (e.g., Feng, Wang, Wang, & Song,
2015; Feng, Wu, & Song, 2015, 2017b, Guo et al., 2012;
Song, Li, Cai, & Ip, 2013) because they considerably
extend the possibilities to model relationships between
latent variables.

Note that the measurement model in Equation (2) is
conceptualized as linear. By introducing additional restric-
tions in Equation (3), nonlinear measurement models can
be obtained. Again, the same holds true for the following
measurement models.

Time-specific component Y3t

Similarly, the time-specific component Y3t is explained
by a measurement equation and a structural equation. It
models the average time trend in the data which are inde-
pendent of the individuals and do not contain information
about inter-individual differences in the growth process:

Y3t ¼ ν3 þ Λ3η3t þ K3X3t þ �3t (6)

η3t ¼ α3 þ B3η3t þΩ3h3ðη3tÞ þ Γ3X3t þ ζ3t: (7)

X3t is a (G3 � 1) dimensional vector of time-specific,
individual-invariant/independent covariates (e.g., situation
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effects such as hospital size where the treatment is con-
ducted or season of the year when the study is conducted).
η3t is a (M3 � 1) dimensional vector of time-specific,
individual-invariant latent variables. h3ðη3tÞ is a (R3 � 1)
dimensional vector of (nonlinear) functions for the latent
variables (i.e., interactions and quadratic effects). �3t
(J � 1) and ζ3t (M3 � 1) are multivariate residuals with
zero expectations. ν3 (J � 1), Λ3 (J �M3), K3 (J � G3),
α3 (M3 � 1), B3 (M3 �M3), Ω3 (M3 � R3), and Γ3

(M3 � G3) are matrices of fixed effects (including inter-
cepts and coefficients).

The within-level model

The within-level model is given by the following measure-
ment model and structural model. It models the intra-
individual differences occurring during the development
process:

½Y1itjSit ¼ s� ¼ ν1s þ ΣL
l¼0Λ1lsη1iðt�lÞ

þ ΣL
l¼0RlsY1iðt�lÞ þ ΣL

l¼0K1lsX1iðt�lÞ
þ �1it (8)

½η1itjSit ¼ s� ¼ α1s þ ΣL
l¼0B1lsη1iðt�lÞ

þ ΣL
l¼0Σ

L0
l0¼0Ω1ll0sh1ll0 ðη1iðt�lÞ; η1iðt�l0ÞÞ

þ ΣL
l¼0QlsY1iðt�lÞ þ ΣL

l¼0Γ1lsX1iðt�lÞ þ ζ1it
(9)

X1it (G1 � 1) dimensional is a vector of individual- and
time-dependent covariates (e.g., dosage of psychophar-
maka). η1it is a (M1 � 1) dimensional vector of individual-
and time-dependent latent variables (such as a latent factor
representing the relative deviance of the depression score
compared to average person and time-specific score). Note
that η1it depends on a latent state s of individual i at time
point t. h1ll0 ðη1iðt�lÞ; η1iðt�l0ÞÞ is a (R1 � 1) dimensional vec-

tor of (nonlinear) functions of latent variables at different
lags (i.e., interactions and quadratic effects). �1it (J � 1)
and ζ1it (M1 � 1) are multivariate residuals with zero
expectations. ν1s (J � 1), Λ1ls (J �M1), Rls (J � J ), K1ls

(J � G1), α1s (M1 � 1), B1ls (M1 �M1), Ω1ll0s (M1 � R1),
and Γ1ls (M1 � G1) are matrices with (fixed or random)
coefficients. As can be seen, the measurement and struc-
tural model are time-series models which include latent
classes.

The NDLC-SEM is capable of including observed catego-
rical variables by a parameterization of threshold parameters.
For a specific item j with the variable ½Y1jitjSit ¼ s� with
a variable-specific number of categories k ¼ 1; :::;mj, we

assume a normally distributed latent variable ½Y �
1jitjSit ¼ s�

and threshold parameters τj1s; :::; τjðmj�1Þs such that:

½Y1jit ¼ kjSit ¼ s� , τjðk�1Þs � ½Y�
1jitjSit ¼ s� < τjks (10)

with τj0s ¼ �1 and τjðmjÞs ¼ 1 for all latent states
s ¼ 1; :::;K. For reasons of simplicity, we will assume contin-
uous observed variables such that ½Y�

1jit Sit ¼ s� ¼ ½Y1jit
�� ��Sit ¼

s� in Equations (8) and (9). Note that in Equation (6) and (7)
½Y1itjSit ¼ s� refers to a J � 1 vector of items and that for an
item j, ½Y1jitjSit ¼ s� is a specific element of this vector
½Y1itjSit ¼ s�.

The Markov switching model

The latent state variable Sit is a person- and time-dependent
variable which follows a Markov switching model with
person- and time-specific transition probability:

PðSit ¼ djSiðt�1Þ ¼ cÞ ¼ expðαitdcÞ
ΣK
k¼1 expðαitkcÞ

(11)

αitdc are person- and time-specific random effects (see
below) with αitKc ¼ 0. For example, the latent state could
represent the (time- and person-specific) adherence to the
treatment regimen. Often, this variable is an unobserved (or
unobservable) entity that nonetheless effects the develop-
ment of the outcome variable (e.g., a decline in depression
for persons that are adherent and a different growth pattern
for those non-adherent).

Random effects

At the within level, we allow for random effects (loadings,
intercepts, and slopes). Any random within-level parameter
pit (e.g., elements from ν1s, Λ1ls etc.) can be decomposed as

pit ¼ p2i þ p3t (12)

where p2i is a subject-specific random effect which is an
element of vector η2i in the between-level model. p3t is an
time-specific random effect which is an element of vector η3t.

If we introduce the indices i and t for the parameters in
the within-level models in Equations (8) and (9), we get the
following (generalized) measurement and structural
models:

½Y1itjSit ¼ s� ¼ ν1s þ ΣL
l¼0Λ1iltsη1iðt�lÞ

þ ΣL
l¼0RiltsY1iðt�lÞ

þ ΣL
l¼0K1iltsX1iðt�lÞ þ �1it (13)
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½ηitjSit ¼ s� ¼ α1s þ ΣL
l¼0B1iltsη1iðt�lÞ

þ ΣL
l¼0Σ

L0
l0¼0Ω1ill0tsh1ll0 ðη1iðt�lÞ; η1iðt�l0ÞÞ

þ ΣL
l¼0QiltsY1iðt�lÞ þ ΣL

l¼0Γ1iltsX1iðt�lÞ þ ζ1it
(14)

Every random parameter is decomposed as in Equation
(12).

Furthermore, we allow residual variances vit on the
within level to be random effects. This means that elements
(i.e., parameters) of the matrices Varð�1itÞ and Varðζ1itÞ can
be random: This allows researchers, for example, to model
heteroscedasticity that is due to person- or time-specific
sources (that are not represented by observed variables on
the respective levels).

vit ¼ expðp2i þ p3tÞ (15)

Again, p2i is a subject-specific random effect, which is an
element of vector η2i in the between-level model. p3t is a time-
specific random effect, which is an element of vector η3t.

Note that in the structural models from above interac-
tions and quadratic effects have been formulated.
Alternatively, it is plausible to use semiparametric spline
effects, if the nonlinear structural relationship is unknown
(e.g., Marcoulides & Khojasteh, 2018).

Continuous time models

The proposed NDLC-SEM applies to empirical research
where the time t strictly follows a discrete variable, i.e.,
each person is observed at time 1; 2; :::Ti. In applications
with daily diaries or daily measurements with smart phones
which follow a strict pattern, this is a plausible assumption.
In cases, when observations follow an irregular pattern,
assumptions of discrete time models are easily violated.
The time variable is then no longer discrete, but real
valued. This leads to biased estimates if discrete models
are applied without accounting for this problem.

There are two ways to address this problem. First, it can
be addressed by a simple procedure which is described in
(see Appendix A in Asparouhov et al., 2017b) in detail (for
the concept of phantom variables, see also Rindskopf,
1984). This procedure involves a transformation of the
time variable by “rescaling, shifting, and rounding.” As
a result of the transformation, the real-valued time variable
is approximated by a discrete time variable. Essentially, the
time variable is multiplied by 1=δ (where δ>0 is a small
number). The result is rounded up to the nearest integer.
The data are filled with missing values for those integer
time values that were not the nearest for an observed con-
tinuous time point, which is not a problematic assumption
(according to Asparouhov et al., 2017b). After this proce-
dure, the discrete dynamic model can be used again. The

authors also provide an algorithm to obtain an optimal δ
and explain how to transform the time variable when cross-
classified models are used. The time shift transformation
aligns the time scale between individuals, when time-
specific effects are estimated.

Second, this problem can be addressed by representing
the models as continuous time models which have a long
tradition in several disciplines (for an introduction to the
application in the SEM context, see Voelkle, Oud, Davidov,
& Schmidt, 2012). Continuous time models are represented
by stochastic differential equations and directly adapt for
unequal and irregular intervals of measurements. In princi-
ple, an implementation of these models in this framework
can be conducted by using nonlinear parameter constraints
that relate parameters describing continuous change to dis-
crete observations (e.g., a drift matrix or a continuous time
error process matrix). For linear models, this process is
straightforward and the matrix B1ilts that includes the auto-
regressive and cross-lagged effects of the latent variables
can be used to estimate a drift matrix B�

1ilts (using con-
straints as proposed on pp. 183–184 in Voelkle et al.,
2012). An extension to the proposed nonlinear modeling
framework needs further technical work that is beyond the
scope of this article (e.g., additional nonlinear constraints
need to be derived for Ω1ll0ts).

SUBMODELS OF THE NDLC-SEM

In this section, we will give two brief examples as special
cases of the NDLC-SEM framework, which might be inter-
esting from an applied perspective. First, we will describe
the two-level nonlinear DLCA. Second, we will describe
a semiparametric DSEM.

Two-level nonlinear dynamic latent class analysis

In situations, when intra-individual processes/trajectories
are examined, inter-individual differences (such as traits,
dispositions, etc.) might be used to describe unobserved
heterogeneity and transitions between latent states. In the
following, a two-level nonlinear DLCA is proposed. We
start with the within-level description.

Within level

In the within level, the measurement and structural mod-
els are given as:

ð½Y1itjSit ¼ s� ¼ ν1s þ ΣL
l¼0Λ1lsη1iðt�lÞ þ �1it (16)

½η1itjSit ¼ s� ¼ α1s þ ΣL
l¼0B1lsη1iðt�lÞ

þ ΣL
l¼0Ω1lsvechðη01iðt�lÞη1iðt�lÞÞ

þ Γ1sX1it þ ζ1it

(17)
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In Equations (16) and (17), lags of observed variables/
covariates (e.g., Y1iðt�lÞ and X1iðt�lÞ) are omitted, but could
be included (cp. Equations (8) and (9)).

Transition probabilities

The unobserved heterogeneity in the trajectories is
described in the Markov switching model from Equation
(11). This means that person-specific individual character-
istics, which are summarized by a random effect αidc,
determine the probability of switching between states or
stay within a specific state (i.e., PðSit ¼ djSiðt�1Þ ¼ cÞ).

The latent states create class-specific relationships which
are described in Equations (16) and (17). The random effect
αidc is part of the between-level model (i.e., η2i).

Between-level

In the nonlinear DLCA, the between-level model is
reduced to a person-specific measurement and structural
model (cp. Equations (2) and (3)):

Y2i ¼ ν2 þ Λ2η2i þ �2i (18)

η2i ¼ α2 þ B2η2i þΩ2vechðη2iη2i0Þ þ Γ2X2i þ ζ2i (19)

As can be seen, in the measurement model the covariate
X2i was omitted, but could be included. Furthermore, there
could be (theoretical or exploratory) reasons to include
semiparametric effects, for example in the structural
model from Equation (19), instead of interactions. For
example, in studies with a large number of scales/covari-
ates, which were measured at the beginning of the study,
an unknown semiparametric relationship could be exam-
ined by formulating a smooth function using a bases
expansion (for cross-sectional SEM, see, e.g., Guo et al.,
2012).

A simplified version of this model is depicted in
Figure 1. This model is based on a dynamic extension
of work in the area of achievement research (e.g.,
Wigfield et al., 1991). On the within level, η11 could
represent achievement at different time points and η12
could represent effort at this time point. Both variables
predict their future score. In addition, both effort at time
t predicts future achievement at time t þ 1; this effect is
moderated by achievement at time t (represented by
ω112), that is, the more effective the effort is, the higher
the achievement is at time t. The latent class S could
represent a state of cognitive mastery of the area (i.e., if
one masters the area, effort does not have an effect at all
on achievement).

Y11i1 Y11i2 Y11i3

Y12i1 Y12i2 Y12i3

η11i1 η11i2 η11i3

η12i1 η12i2 η12i3

Λ111s Λ111s Λ111s
Λ121s Λ121s

Λ112s Λ112s Λ112s

β111s β111s

β122s β122s

β112s β112s

ω112s ω112s

Si1 = s Si2 = s Si3 = s

Y2i η21iη22i
Λ2 β212

within

between

FIGURE 1 Path diagram for a two-level nonlinear model for the first three measurement occasions. On the within level, two factors are specified where the
first factor has a lag 0 and lag 1 measurement model. The lag 1 structural model includes an interaction effect (see text for more details).
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Single-level semiparametric dynamic structural
equation model

In the single-level semiparametric DSEM, a smooth relation-
ship between the lagged latent variables is allowed. This makes
the autoregressive structural model capable of more flexible
lagged effects.

The measurement and structural model can be described
as follows:

Y1it ¼ ν1 þ ΣL
l¼0Λ1lη1iðt�lÞ þ �1it (20)

η1it ¼ α1 þ ΣL
l¼0Ω1lh1lðη1iðt�lÞÞ þ Γ1X1it þ ζ1it (21)

In Equation (20), the lagged effects can be simplified, such that
only a traditional factor analytic relationship between the mea-
sured variable and the latent variable is allowed. In Equation
(21), h1l describes a smooth function related to lag l, which
contains basis expansions of the lagged multivariate latent
variable η1iðt�lÞ (e.g., a regression spline function). In this

way, it is possible to obtain the nonlinear lagged effects of the
latent variable η1iðt�lÞ, instead of simple linear effects.

A simplified version of this model for L ¼ 1 is depicted in
Figure 2.

Different time-series models on the within level

Discrete time models for intensive repeated measures include
autoregressive (AR) and moving average (MA) models, as
well as their combinations such as ARIMA models. Within
the proposed framework, each of these models can be speci-
fied. Which model is appropriate depends on the research
questions, and on the process investigated. For example, AR
and MA models assume that there is no mean drift over time
(stationarity), whereas the ARIMA model can be used to
model such drifts. AR and MA models describe different
patterns of autocorrelation in the data.

For example, a simple ARIMA(1,1,0) (differenced first-
order autoregressive model) for a single latent variable can
be specified by hill0 ¼ ðη1iðt�lÞ � η1iðt�l0ÞÞ from Equation (9):

η1it ¼ α1 þ η1iðt�1Þ þ Ω112ðη1iðt�1Þ � η1iðt�2ÞÞ
þ ζ1it (22)

with B11s ¼ 1. We illustrate this model in the empirical
example section in more detail.

EXAMPLE—COLLEGE DROP-OUT

In this section, we give a simulated example of a model, which
is suitable to describe unobserved intra-individual processes
(i.e., changes between states). These latent changes between
states are driven by inter-individual differences (e.g., traits).

Wewill assumeN ¼ 500 college students of mathematics and
explain their intention to quit their studies (i.e., college drop-
out). This intention (to quit vs. to stay) can be assumed to be
a Markov process. The individual-specific transition probabil-
ities between the states of this process can be explained by
a random effect on the between level. The between-level
model assumes inter-individual differences which have an
effect on the unobserved intention. For example, some vulner-
ability factors (e.g., lack of conscientiousness and neuroti-
cism) could increase the risk of an intention to quit.1 Some
factors could have a synergistic dysfunctional consequence if
their joint occurrence has very adverse effects. This synergy is
then a nonlinear effect (of the latent vulnerability variables) on
the transition probability. Furthermore, daily affective states
could be measured on the intra-individual level.

We assume that the population model on the between
level is given as:

η21i ¼ 3:85þ :5 � η22i þ :5 � η23i þ :5 � η22i � η23i
þ ζ21i (23)

Y2i ¼

1 0
1 0
1 0
0 1
0 1
0 1

2
6666664

3
7777775
� η22i

η23i

� �
þ

�21i
�22i
�23i
�24i
�25i
�26i

2
6666664

3
7777775

(24)

where η22 and η23 are standard normally distributed with
a correlation of .3. ζ21 is normally distributed with zero
expectation and fixed variance of π2=3. Note that the random
effect η21 has no measurement model. η22 and η23 (e.g.,
conscientiousness and neuroticism) have three indicators
each. The residuals �21; �22; . . . ; �26 are standard normally
distributed and uncorrelated and have variances of :25.

η21 defines the random effect, which describes the tran-
sition probabilities for the states Sit ¼ s with ðs ¼ 1; 2Þ:

P11i ¼ expðη21iÞ
expðη21iÞ þ 1

; P12i ¼ 1

expðη21iÞ þ 1
;

P21i ¼ 0; P22i ¼ 1

(25)

For persons who have no intention to quit at time point t,
we assume that the probability to maintain this intention at
time point t þ 1 is P11 and to change the intention (i.e., to
quit) is P12. For simplicity, we assume that the transition
probabilities to reverse the decision and to continue studies

1Note that there are elaborated theories on college drop-out that deal
with several types of risk factors (e.g., Bean, 2005; Burrus et al., 2013;
Tinto, 1993). These risk factors also include variables which are not just
part of the personality of the students, but of their circumstances of life, or
institutional characteristics and many more.
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at time point t þ 1 after having decided to quit at time point
t is equal to P21 ¼ 0; as a consequence, the probability to
maintain the decision to quit is equal to P22 ¼ 1.

We assume that we have 50 time points (measurement
occasions). The population model on the within level is
given as:

½η1itjSit ¼ s� ¼ :5 � η1iðt�1Þ þ :2 � η1iðt�2Þ þ ζ1it (26)

Y1it Sit ¼ sj½ � ¼ 1 � η1it þ �1it (27)

where ζ1t is normally distributed with unit variance for both
states. The expectation of ζ1t is 0 in the first state and 2 in
the second state. Y1 represents three indicators. The three
residuals in �1t are multivariate normally distributed and
uncorrelated with unit variances. The process modeled is an
auto-regressive AR(2) process.

The complete model is depicted in Figure 3.

Estimation

Between level

The following distributions for the variables were spe-
cified at the between level of the model (see Eqs. (23) and
(24)):

Y2ji,NðμY2ji ; σ2�2jÞ; for j ¼ 1; :::; 6 (28)

with

μY21i ¼ η22i; μY22i ¼ λ22η22i; μY23i ¼ λ23η22i (29)

μY24i ¼ η23i; μY25i ¼ λ25η23i; μY26i ¼ λ26η23i (30)

and

ðη22i; η23iÞ0,Nð0;Φ2Þ (31)

The person-specific random effect was specified as follows:

η21i,Nðμη21i ; σ2ζ21Þ (32)

μη21i ¼ β20 þ β21η22i þ β22η23i þ ω223η22iη23i (33)

The latent class membership (t ¼ 2 . . .T) was implemented
using Equation (25). At time t ¼ 1, all persons were
assumed to be in state S ¼ 1.

Within level

At the within level, the structural model was time-/state-
dependent:

η1it,Nðμη1it ; σ2ζ1sÞ (34)

μη1it ¼ α1s þ β11η1iðt�1Þ þ β12η1iðt�2Þ (35)

The measurement model was given as:

Y1jit,NðμY1jit ; σ2�1jÞ; for j ¼ 1; ::; 3 (36)

μY11it ¼ η1it; μY12it ¼ λ12η1it; μY13it ¼ λ13η1it (37)

Y1i1 Y1i2 Y1i3

η1i1 η1i2 η1i3

X1i1 X1i2 X1i3

Λ11 Λ11 Λ11

Γ1 Γ1 Γ1

h11 h11

FIGURE 2 Path diagram for a single-level semiparametric model for the first three measurement occasions. Here, we simplified the model by using only
a lag 1 structural model and a lag 0 measurement model which assumed that variables only loaded on the latent factors at the same time point.
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Prior distributions

Priors were chosen as weakly informative for the mea-
surement models and for the level 1 auto-regressive
coefficients

λ1j,Nð1; 1Þ; for j ¼ 2; 3 (38)

λ2j,Nð1; 1Þ; for j ¼ 2; 3; 5; 6 (39)

β1l,Nð0; 1Þ; for l ¼ 1; 2 (40)

or uninformative for the level 2 structural model and the
level 1 intercepts

β20,unif ð2; 6Þ (41)

β2p,unif ð0; 1Þ; for p ¼ 1; 2 (42)

ω223,unif ð0; 1Þ (43)

α11 ¼ 0 (44)

α12,unif ð0; 4Þ (45)

where the constraint α11 ¼ 0 was necessary for model
identification. Note that this constraint always holds in
this model if data are rescaled by Yc

1jit ¼ Y1jit � �Y111
because Y11i1 ¼ η1i1 and all persons are in state Si1 ¼ 1 at
the first measurement occasion.

Standard priors were chosen for the precisions as

σ�2
�1j
,Gammað9; 4Þ; for j ¼ 1 . . . 3 (46)

σ�2
�2j
,Gammað9; 4Þ; for j ¼ 1 . . . 6 (47)

y21i

y22i

y23i

y24i

y25i

y26i

η22i η23iη22iη23i

η21i

1

λ22

λ23

1

λ25

λ26

β21 β22
ω223

y11i1 y12i1 y13i1 y11i2 y12i2 y13i2 y11i3 y12i3 y13i3

η1i1 η1i2 η1i3

1 λ12 λ13

β11

Si1 = s Si2 = s Si3 = s

β12

[α1s]

within
between

FIGURE 3 Path diagram for the simulated example (college student drop out) for the first three measurement occasions. On the within level, an AR(2)
process with two states Sit ¼ 1; 2 is assumed for one latent variable with three indicators. On the between level, a nonlinear model with two latent factors and
one interaction is modeled.
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σ�2
ζ1s
,Gammað9; 4Þ; for s ¼ 1; 2 (48)

σ�2
ζ21
,Gammað9; 4Þ (49)

Φ�1
2 ,WishartðΦ�1

0 ; 4Þ (50)

where Φ0 was a 2� 2 identity matrix.

Implementation

The model was implemented in Jags (Plummer, 2003)
using R2jags (Su & Yajima, 2015) in R (R Core Team,
2016). Three chains with 4000 iterations were run, from
which the first 2000 iterations were discarded as burn-in.
Convergence was checked by investigating within and
between chain variability graphically, and by using the
Rhat statistic with a rule of thumb that the model converged
when Rhat � 1:1 for all parameters.

Code for the model can be obtained by the first author or
the second author’s website.

Results

In Table 1, estimation results for the simulated example are
presented. All coefficients indicated convergence with
a maximal Rhat of 1:10 (for α12). Percentile confidence
intervals included the population values for all coefficients.
Between-level coefficients’ standard deviations (SDs) were
considerably larger than those from the within level as
expected.

Figure 4 illustrates the estimated state membership over
time (gray lines are those persons in the population that
switched to state 2). Ninety-eight percent of the switchers
and non-switchers were correctly identified at the last mea-
surement occasion T (χ2 ¼ 456:94; df ¼ 1; p<:0001). This
ratio was rather constant over time with an average correct

TABLE 1
Parameter Estimates for the Example (Generated Data for College Student Drop Out)

Mean SD 2.5% 50% 97.5% Rhat

α11 0.00 0.00 0.00 0.00 0.00
α12 1.96 0.05 1.86 1.96 2.05 1.10
b20 4.06 0.12 3.82 4.05 4.31 1.02
b21 0.62 0.14 0.35 0.62 0.88 1.01
b22 0.72 0.13 0.47 0.72 0.96 1.02
ω223 0.65 0.14 0.38 0.65 0.92 1.00
λ12 1.00 0.00 1.00 1.00 1.00 1.01
λ13 1.00 0.00 1.00 1.00 1.00 1.01
λ22 1.03 0.04 0.95 1.03 1.11 1.00
λ23 1.00 0.04 0.93 1.00 1.08 1.01
λ25 0.98 0.04 0.91 0.98 1.06 1.01
λ26 1.03 0.04 0.95 1.03 1.11 1.00
b11 0.51 0.01 0.49 0.51 0.53 1.07
b12 0.20 0.01 0.18 0.20 0.21 1.03
σ2ζ11 1.00 0.02 0.97 1.00 1.04 1.03

σ2ζ12 0.97 0.02 0.93 0.97 1.01 1.01

σ2ζ21 2.85 0.57 1.84 2.81 4.06 1.03

ϕ211 0.91 0.07 0.78 0.91 1.06 1.01
ϕ212 0.32 0.05 0.22 0.32 0.43 1.00
ϕ221 0.32 0.05 0.22 0.32 0.43 1.00
ϕ222 1.06 0.09 0.90 1.06 1.25 1.00
σ2�11 1.01 0.01 0.98 1.01 1.03 1.00

σ2�12 1.00 0.01 0.98 1.00 1.02 1.00

σ2�13 1.01 0.01 0.99 1.01 1.03 1.00

σ2�21 0.27 0.02 0.22 0.26 0.32 1.00

σ2�22 0.30 0.03 0.25 0.30 0.36 1.01

σ2�23 0.27 0.03 0.23 0.27 0.32 1.00

σ2�24 0.30 0.03 0.25 0.30 0.36 1.01

σ2�25 0.29 0.03 0.24 0.29 0.34 1.01

σ2�26 0.30 0.03 0.24 0.30 0.36 1.01
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FIGURE 4 Estimated dynamic class membership for switchers (gray) and non-switchers (black).
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FIGURE 5 Estimated dynamic class membership for switchers (gray) and non-switchers (black).
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classification of 98.4% (cf. Figure 5). The switching points
for the states and their estimates correlated at :99.

EXAMPLE—DEVELOPMENT OF MATH SKILLS

Next, we will present an empirical example to illustrate the
capabilities to model complex hypotheses in this frame-
work. The (real) data are taken from the Early Childhood
Longitudinal Study, Kindergarten Class of 1998–1999
(ECLS-K; Tourangeau, Nord, Lê, Pollack, & Atkins-
Burnett, 2009). In this study, students were measured at
seven measurement occasions from kindergarten to grade 8.
Here, we use a random subsample of 500 students that were
measured at each of the seven measurement occasions
using math and reading items. The focus lies in the devel-
opment of math skills for which we chose five out of nine
scales (ordinality/sequence, add/subtract, multiply/divide,
place value, rate & measurement)2 because the remaining

scales were either to simple at the end of measurement (all
students had 100% correct answers) or to complicated at
the beginning (all students had 0% correct answers).

TABLE 2
Results for Structural ARIMA Model for the Empirical Example

(ECLS-K). Parameterl Labels According to Figure 6

Mean SD 2.5% 50% 97.5% Rhat

α111 1.56 0.05 1.47 1.56 1.65 1.00
α121 −0.76 0.07 −0.89 −0.76 −0.63 1.00
α112 1.66 0.02 1.62 1.66 1.70 1.00
ω11 −0.24 0.02 −0.29 −0.24 −0.19 1.00
ω21 0.85 0.04 0.76 0.85 0.93 1.00
ω12 −0.73 0.02 −0.78 −0.74 −0.68 1.00
α2 2.37 0.52 1.34 2.37 3.38 1.01
γ11 −2.31 0.65 −3.61 −2.30 −1.04 1.01
γ12 −0.33 0.71 −1.72 −0.34 1.09 1.00
γ21 0.30 0.10 0.12 0.30 0.50 1.01
γ13 −0.49 0.12 −0.73 −0.49 −0.26 1.01
γ14 −0.57 0.12 −0.82 −0.57 −0.33 1.00
ψ111 3.62 0.13 3.36 3.62 3.88 1.00
ψ211 5.09 0.18 4.75 5.09 5.45 1.00
ψ221 10.85 0.32 10.24 10.85 11.48 1.00
ψ112 0.17 0.01 0.15 0.17 0.20 1.01

m

within

between

r2 Δr2 r2 · m Δr2 · m r3 Δr3 r3 · m Δr3 · m

η132 η133[α2]

γ11 γ12 γ13 γ14
γ21

S1 = 1 S2 = s S3 = s

St = 2

St = 1

y11 y21 y31 y41 y51 y12 y22 y32 y42 y52 y13 y23 y33 y43 y53

η1111

η1211

η1121

η1221

η1131

η1131

η112 η122 η132

Δη112

Δη122

Δη12

1

1

1

1 −1

1 −1

1 −1

ω11

ω21

ω12

(ψ111)

(ψ221)
(ψ211)

(ψ112)

[α11]

[α21]

[α12]

FIGURE 6 Path diagram and estimates for the empirical example for the first three measurement occasions. η13t is the within-level (person- and time-
specific) latent variable predicting class membership via reading skills (rt) and reading skill change (Δrt ¼ rt � rt�1), fine motor skills at baseline (m), and
their interactions. On the within level, the two constructs for S ¼ 1 are basic and abstract math skills, in S ¼ 2 these math skill facets are represented by
a single math skill level that students achieve at some time point during the study. The math development is modeled using an ARIMA(1,1,0) model.

2 Coded with CtR4MPB3 to CtR4MPB7 where t indicates the time
point.
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Additional information were used as fine motor skills at the
initial measurement occasion. Time-specific reading skills
were used as observed covariates (based on the average of
10 scales measuring reading skills3). Math and reading
skills were available as percentage of correct items and
were logit-transformed before analysis.

In this example, we hypothesize that a nominal change
in the math skill constructs occurs over time. Whereas at
the beginning two constructs (concrete and abstract math)
are necessary to describe the performance in the five dif-
ferent scales, only one construct for math skills will be
sufficient at a later time point (all hypotheses are illustrated
in the path diagram in Figure 6). This nominal change is
operationalized as the latent state variable Sit which repre-
sents a cognitive state that we want to name math mastery:
Students in state Sit ¼ 1 have not yet mastered the math test
at time t, they have lower scores in the constructs, and their
capabilities in concrete and abstract math questions are
represented by two (correlated) constructs. Students in
state Sit ¼ 2 mastered the math test at time t and there is
no differentiation in their capabilities of concrete and

abstract math skills necessary. For students in state 1,
a switch to state 2 can be predicted by the person- and
time-specific reading skills and the individual change from
the last to each respective time point. The second part
models the hypothesis that persons who have a strong
increase from one time point to the next in reading skills
will also be more likely to master math. Fine motor skills
in kindergarten (such as holding a pen or using a scissor)
were also assumed to predict a switch from state 1 to 2
because early fine motor skills are related to abstract
thinking (Luo, Jose, Huntsinger, & Pigott, 2007). We
assume that increasing reading skills can compensate
low fine motor skills, which implies a nonlinear interac-
tion effect between these variables. For the development
of each factor of math skills η1kit, we assume an ARIMA
(1,1,0) model:

½η1ki1jSi1 ¼ s� ¼ α1ks þ ζ1ki1
½η1ki1jSi2 ¼ s� ¼ α1ks þ η1ki1 þ ζ1ki2
½η1ki1jSi ¼ s� ¼ α1ks þ η1kiðt�1Þ þ ωks ðη1kiðt�1Þ � η1kiðt�2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δη1kiðt�1Þs

þ ζ1kit for t > 2

(51)
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FIGURE 7 Estimated dynamic class membership for the students (the jittering is only imposed to illustrate individual lines).

3 CtR4RPB1 to CtR4RPB10.
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with Ψ1kts ¼ Ψ1ks for all t. Measurement models were
assumed to be time invariant.

For estimation, four chains each with 16,000 iterations
were run in Jags with 8,000 burn-in iterations. Details on
prior selection can be found in the appendix (generally
speaking, we used weakly informative priors on all coeffi-
cients in a similar way as in the simulated example pre-
sented above).

The results are presented in Table 2 and are illustrated in
Figures 7 and 8. Parameter estimates converged with an Rhat
below 1.10 for each parameter. All coefficients could be con-
sidered significant with 95% probability intervals not including
zero with the exception of the effect of Δrt on η2t. β was
negative for concrete math in state 1 and math skills in state
2, indicating a ceiling effect over time. This ceiling effect can
be seen in Figure 8. Across time, the factor score distribution
moved upward but bent to the ceiling. Abstract math skills
under state 1 started very low and developed over time. At
time point 5 (3rd grade) students started to master math and
switch to state 2 andmost studentsmasteredmath in grades 5 or
8 (time points 6 and 7) (cf. Figure 7).

DISCUSSION

Ambulatory assessment has become a standard technique
for the examination of human behavior, psychophysiologi-
cal parameters, and subjective measures. It can be assumed

that intra-individual changes of these variables are influ-
enced by dispositions (e.g., inter-individual differences
such as traits) and time-specific variables (e.g., events,
interventions). There is a need to integrate individual-
specific and time-specific effects in psychometric models.
Furthermore, unobserved (latent) heterogeneity can be
a substantial part of intra-individual trajectories, which
can be an expression of specific states individuals are
located in (e.g., an intention to quit colleague). Person- or
time-specific effects can influence the probabilities of
changes between these latent states.

Here, we proposed a general framework that can inte-
grate (i) discrete latent processes, (ii) individual-specific,
and (iii) time-specific effects. Furthermore, (iv) flexible
structural relationships on both the between level and
within level were included that are an important feature of
more realistic models. In the past, there have been very
elaborated models that combined different features (e.g., (i)
and (ii) or (ii) and (iii)) but lacked a combination of all four
aspects. Two examples are the DLCA (Asparouhov et al.,
2017a) and DSEM (Asparouhov et al., 2017b) frameworks.
In the DLCA framework, discrete changes of latent states
are described as a Hidden Markov process. Its transition
probabilities are (person-specific) random effects, which
are driven by inter-individual differences. In the DSEM
framework, individual-specific and time-specific effects
are used to explain random effects, but unobserved discrete
states are not part of the overall model. The proposed

FIGURE 8 Scatter plots for each measurement occasion and factor. Persons start to switch to class 2 at time point 5 (3rd grade). For illustration purposes,
factor scores were centered.
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NDLC-SEM framework is intended to combine these fra-
meworks and to add (semi-parametric) nonlinear effects
which account for flexible relationships of the latent vari-
ables at the between and within level. As another extension
the intra-individual Hidden Markov process is a result of
both individual-specific and time-specific effects.

In a first example, we examined simulated data of college
students in mathematics and explained their intentions to quit
their studies (i.e., college drop-out). We assumed that there was
an unobserved intra-individual process (with latent states)
which reflected their daily affect. The occurrence probabilities
of the latent states, which accounted for the heterogeneity in the
intra-individual trajectories, were driven by inter-individual
differences (e.g., some vulnerability factors, such as lack of
conscientiousness and emotional stability) in a nonlinear
model. There are college drop-out theories which rely on com-
plex (nonlinear) dependencies and several types of predictors
(e.g., Bean, 2005; Burrus et al., 2013; Tinto, 1993) and which
address several levels of data/predictors (incl. person- and time-
specific covariates of processes, but also institutional and social
factors).

In a second empirical example with data from the ECLS-K
Study, we showed how the framework can be used to model
continuous and nominal change of math skill levels. It is an
ongoing challenge and discussion about how math mastery
should be modeled. While most research assumes continuous
latent factors, categorical latent factors are plausible, too (e.g.,
Doignon & Falmagne, 2012). Here, we showed how both can
be integrated in a single model by using a time- and person-
specific statemembership that indicatedmathmastery. Students
who had mastered math could be described with a single math
skill factor. Studentswhohad not yetmasteredmath needed two
constructs (concrete and abstract math skills) to account for the
underlying dimensions in the data. State membership could be
predicted with both the time-varying covariates reading skills
and a baseline covariate of fine motor skills (e.g., Luo et al.,
2007). We found an interaction effect between these two vari-
ables that indicated that high scores in one of the constructs
(reading skills orfinemotor skills) could compensate low scores
in the other one in the transition to math mastery.

In the NDLC-SEM framework, the integration and
estimation of these different effects has been achieved
by using Bayesian MCMC methods. Bayesian methods
allow researchers to flexibly implement complex relation-
ships between variables, hierarchical data structures,
dynamic latent classes, or nonparametric relationships
(e.g., regression splines). The implementation of the
example has been achieved with the JAGS software
(Plummer, 2003) using the R2jags package (Su &
Yajima, 2015). We provide syntax for applied researchers
which contains characteristic parts of the NDLC-SEM,
such that the syntax can be expanded easily for more
complex models. This implementation (e.g., the time-
dependent class membership of individuals) goes beyond

what is currently possible in commercial software
packages. The implementation and estimation of models
within the NDLC-SEM framework though builds on
some assumptions which we would like to reflect
critically.

Estimation

Generally speaking, estimation of models in the NDLC-
SEM framework is possible with both Bayesian and
Frequentist approaches. However, both perspectives imply
different challenges, which need to be considered.

Bayesian estimation

As can be seen from the example section, the implemen-
tation in a Bayesian context requires the specification of
well-considered prior distributions. In our implementation,
the prior distribution of (a) coefficients on the between
level (see Equations (41)–(43)) and (b) mean structures of
the residuals of the different latent classes (see Equation
(45)) were kept rather uninformative to avoid estimates that
are too dependent on the chosen priors. More informative
priors may speed up convergence, but need to be based on
reliable information.

Results not reported here showed that an alternative
parameterization, which allowed for a free estimation of
the class-specific means on the within level needed highly
informative priors (i.e., variances of 0.1 around the true
means) in order to detect the two latent classes. Even
though the parameter might not be identified in
a traditional frequentist meaning, the choice of informative
priors allows for “approximate identification’’ (for a similar
modeling approach in differential item functioning, see Shi,
Song, Liao, Terry, & Snyder, 2017). We avoided this by
imposing a constraint that holds under the assumption that
all persons are in state 1 at the first measurement occasion
(for example, all students have the intention to stay at the
first day). This assumption might not always hold and
needs further evidence provided by researchers or needs
to be adapted to the situation.

Another important aspect of Bayesian estimation is the
need for a sparse estimation. The proposed NDLC-SEM
offers many parameters, e.g., fixed effects (which might be
related, for example, to large initial assessments with many
covariates), random effects, and mixtures of distributions.
In order to obtain sparse models, it is useful to consider
regularized estimation. While for fixed effects, there is
literature in Bayesian modeling, which deals with suitable
prior distributions for penalized models (e.g., Feng et al.,
2017b; Feng, Wu, & Song, 2017a; Guo et al., 2012), for
mixture models, the field of sparse estimation of the num-
ber of mixture components is of increasing importance
(e.g., Liu & Song, 2018; Papastamoulis & Iliopoulos,
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2009; Richardson & Green, 1997). In addition, research on
Bayesian penalized estimation so far focused predomi-
nantly on observed variable models (e.g., Bhadra, Datta,
Polson, & Willard, 2017; Bhattacharya, Pati, Pillai, &
Dunson, 2015; Carvalho, Polson, & Scott, 2010; Piironen
& Vehtari, 2017) and future investigations are necessary to
show if similar recommendations on prior usage hold.

Frequentist estimation

A frequentist alternative to the Bayesian estimator that
does not need priors are maximum likelihood estimators
based on the expectation maximization algorithm (EM;
Dempster, Laird, & Rubin, 1977). However, estimation of
nonlinear models is already limited for single-level situa-
tions; their computational burden increases (exponentially)
with the number of nonlinear terms (e.g., interactions) (e.g.,
Klein & Moosbrugger, 2000) and random effects (e.g.,
Muthén & Asparouhov, 2009). For clustered (i.e., multi-
level) data structures as well as for large-scale or time-
intensive data sets, this computational burden easily
increases to an amount that is not feasible to estimate
with today’s available computer power. The reason for
that is that likelihood-based estimators include integrals,
which marginalize random effects (such as latent variables)
(e.g., Rabe-Hesketh et al., 2004). These likelihood integrals
need to be approximated by elaborated quadratures, for
example, within a new adaptation of the EM algorithm
that still needs to be developed. The inclusion of latent
classes, as they are given in Markovian processes, increases
the complexity of the estimation. The multilevel structure
of the data leads to additional latent variables which
increase the dimensionality of the integral to be optimized.
The number of knots in the quadratures explodes.
Relaxation of distributional assumptions of latent variables
or residuals requires additional optimization routines
which, for example, approximate nonnormality (e.g.,
Kelava & Brandt, 2014; Kelava, Nagengast, & Brandt,
2014). In order to obtain a very first implementation of
a frequentist estimation procedure for the NDLC-SEM
framework, it might be plausible to start with simple
assumptions of multivariate normality.

Extensions of the EM algorithm for large-scale data
have recently been discussed for simpler Gaussian mixtures
(e.g., Huang, Peng, & Zhang, 2017; Ju & Liu, 2010;
Medeiros, Araújo, Macedo, Chella, & Matos, 2014;
Ordonez & Omiecinski, 2002; Sato & Ishii, 2000; Vlassis
& Likas, 2002). For example, Verma, Dwivedi, and
Sevakula (2015) state three possibilities that might also be
applicable to the framework proposed here: First, in large-
scale data sets, the data itself can be summarized within
a defined grid (e.g., by calculating weights for identical
data points) and the resulting smaller data set is then
analyzed. Second, a parallelization of the problem could
be conducted, where randomly drawn (smaller) data sets

from the complete data set are analyzed in parallel (by so-
called workers); this allows researcher to better exploit the
power of parallel processors. And third, the inclusion of an
additional approximation step that takes previous (errors of)
estimates into account. As can be seen, further research is
needed to apply these ideas to (high-dimensional) models
formulated in the proposed framework (or equally for the
DLCA/DSEM frameworks). For reasons of availability of
feasible estimation procedures, we decided to conduct our
analyses within a Bayesian approach. The development of
frequentist estimation techniques for multilevel time-series
models is an important task which needs to addressed;
however, it is beyond the scope of this article.

Recommendations

Current research (based on extensive simulation studies)
shows that estimation quality in multilevel SEM frame-
works depends on many aspects, such as model structure,
types of variables, number of subjects and measurement
occasions, and estimators (for overviews, see Depaoli &
Clifton, 2015; Holtmann, Koch, Lochner, & Eid, 2016).
Thus, giving general recommendations is difficult.

Depaoli and Clifton (2015) showed that the choice of prior
distributions for between-level random effects is important.
Uninformative priors for between-level random effects are
sub-optimal with respect to parameter recovery in small
samples. In these situations, the authors recommended that
applied researchers should consider “the magnitude of
between-group variation present in their data to inform the
choice of priors.’’ Although they focused on multilevel SEM
in their publication, parameters on the between level should
be sensitive to small samples in the NDLC-SEM, DLCA, and
DSEM frameworks, too, and similar recommendations hold.

The same is true for mixture models (e.g., Depaoli,
Yang, & Felt, 2017). In their work, the authors showed
that parameter estimates related to the latent classes are
substantially influenced by the choice of the prior distribu-
tions. In line with their work, we recommend a sensitivity
analysis of the prior distributions to understand the stability
of the parameter estimates.

Schultzberg and Muthén (2018) showed in the context of
the DSEM framework that larger samples (e.g., N ¼ 200)
and few measurement occasions (e.g., T ¼ 10) performed
substantially better than samples with fewer subjects (e.g.,
N ¼ 20) and many measurement occasions (e.g., T ¼ 100).
Large N seem to be more beneficial than large T .
Therefore, we also recommend to have a substantially lar-
ger number of subjects than measurement occasions. The
reader may refer to extensive simulation studies as given by
Schultzberg and Muthén (2018), when DSEM-type models
have to be estimated. In order to reliably use these methods
for situations with few persons in intensive longitudinal
sets, as they exist, for example, in psychophysiological
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experiments, further research on optimal sets of priors
needs to be done. Generally speaking, although there is
literature on frequentist and Bayesian multilevel SEM,
further research is needed to understand the requirements
for reliable parameter estimation in more complex frame-
works, such as the one proposed or DLCA and DSEM.

Finally, we would like to give a cautionary note on the
specification and estimation of the proposed NDLC-SEM
framework. Theoretically, the proposed framework could be
estimated in its generality (pending on typical identification
assumptions of latent variable mixture modeling and dynamic
SEM). However, its main contribution is that it allows
researchers to choose from many important conceptual ele-
ments, which are only partially given in other frameworks. For
example, the model equations offer many features like separa-
tion of intra-individual changes from inter-individual differ-
ences and time-specific effects, unobserved heterogeneity as
part of the Hidden Markov Models, a large number of (auto-
regressive) lagged effects and flexible nonlinear effects (and
covariates) which can be included on both the within and
between level. We would like to emphasize that with the
complexity of the framework and the technical capabilities,
the responsibility for sparse models grows (in the sense of
Occam’s razor). We give two recommendations related to
sparsity. First, we advise against a naive estimation of
a model that is not sparse enough and encourage to specify
those features of the framework which are important from
a theoretical perspective, but cannot be specified by other
dynamic latent variable frameworks (e.g., nonlinear effects).
A model that includes too many parameters will probably
overfit the data. In each empirical situation, we recommend
that the decision concerning the necessity to include different
parts of the model depends on both theoretical considerations
(such as inclusion of nonlinear effects in substantive theories)
and model fit comparisons of competing models. Thus, the
proposed framework serves as a starting point of model
specification.

Second, if high-dimensional data, for example, from
ambulatory assessment with many repeated measures are
analyzed, models are necessarily complex. Comprehensive
modeling techniques offer an inclusion of a high number of
predictors/covariates (e.g., on the between level), especially
when there is a huge initial assessment at the beginning of
a study, in which many scales were administered (e.g., in
the COGITO study, Schmiedek, Lövdén, & Lindenberger,
2010). Or, strong assumptions about measurement invar-
iance over many repeated measures are too strong and need
to be relaxed (Bauer, 2018; Liang, Yang, & Huang, 2018).
In these cases, it might be meaningful to reduce the number
of actually relevant parameters (i.e., effective number of
degrees of freedom) by using penalized estimation techni-
ques (e.g., Brandt et al., 2018; Jacobucci, Grimm, &
McArdle, 2016). At this time point, there still is a need of

technical developments in this field that addresses sparsity
in complex models as in this framework that has not been
investigated yet.

Future directions and conclusion

In sum, Bayesian estimation (as applied here) allows
a great flexibility of specifying models. However, there is
a need for frequentist estimation, which builds on less
assumptions than Bayesian estimation. To the best of our
knowledge, there are no comprehensive frequentist estima-
tors which are capable of estimating all effects simulta-
neously that can be described by the proposed NDLC-
SEM framework.
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APPENDIX

Model setup and priors for the empirical example

Distribution of variables. All observed (math1jit) and latent
variables η were assumed to follow a normal distribution
with the respective mean structure and variance:

½math1jitjSit ¼ s�,Nðμ1jits; σ2�1jÞ (52)

,MVNðμη;it1;Φζ11Þ (53)

,Nðμη;it2; σ2ζ12Þ (54)

where Nðμ; σ2Þ was the normal distribution with mean μ and
variance σ2. The ARIMA(1,1,0) latent variable model is
described in Equation (51) and the factor loading pattern is
illustrated in Figure 6.

Markov Switching Model. The probabilities for state mem-
bership were modeled using a time- and person-specific latent
variable αitcd for t > 1 (all persons were assumed to be in state
Si1 ¼ 1 at t ¼ 1).

PðSit ¼ 1jSiðt�1Þ ¼ 1Þ ¼ expðαit11Þ
Σ2
k¼1 expðαitk1Þ

(55)

PðSit ¼ 2 Siðt�1Þ ¼ 1Þ ¼ 1� PðSit ¼ 1
�� ��Siðt�1Þ ¼ 1Þ (56)

PðSit ¼ 1jSiðt�1Þ ¼ 2Þ ¼ 0:01 (57)

PðSit ¼ 2 Siðt�1Þ ¼ 2Þ ¼ 1� PðSit ¼ 1
�� ��Siðt�1Þ ¼ 2Þ (58)

where we chose a very small probability for those students that
mastered math to switch back to a non-mastery state of
π ¼ 0:01. The latent variableαit11 was specified as (see Figure 6)

αit11 ¼ α11 þ β11 � readi;t�1 þ ω13

� ðreadit � readiðt�1ÞÞ þ β21 � motori þ ω21

� motori � readiðt�1Þ þ ω22 � motori
� ðreadit � readiðt�1ÞÞ (59)

Prior distributions. Priors were chosen as weakly infor-
mative priors throughout the model. For the measurement
model on the within level, factor loading and intercept
priors were specified as

λ1j,Nð1; 1Þ; for j ¼ 1 . . . 5 (60)

τ1j,Nð0; 2Þ; for j ¼ 1 . . . 4: (61)

For the structural models coefficients on the within and
between levels, again weakly informative priors were
chosen:

β11,Nð0; 1Þ (62)

β21,Nð0; 2Þ (63)

ω13,Nð0; 1Þ (64)

ω2p,Nð0; 2Þ for p ¼ 1; 2 (65)

α11,Nð0; 2Þ (66)

where the constraint α11 ¼ 0 was necessary for model
identification. Note that this constraint always holds in
this model if data are rescaled by Yc

1jit ¼ Y1jit � �Y111
because Y11i1 ¼ η1i1 and all persons are in state Si1 ¼ 1
at the first measurement occasion.

Standard priors were chosen for the precisions as

σ�2
�1j
,Gammað9; 4Þ; for j ¼ 1 . . . 5 (67)

Φ�1
ζ11,WishartðΦ�1

0 ; 4Þ (68)

σ�2
ζ12
,Gammað9; 4Þ (69)

where Φ0 was a 2� 2 identity matrix.
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